mxnet.model.FeedForward¶
-
class
mxnet.model.
FeedForward
(symbol, ctx=None, num_epoch=None, epoch_size=None, optimizer='sgd', initializer=<mxnet.initializer.Uniform object>, numpy_batch_size=128, arg_params=None, aux_params=None, allow_extra_params=False, begin_epoch=0, **kwargs)[source]¶ Model class of MXNet for training and predicting feedforward nets. This class is designed for a single-data single output supervised network.
- Parameters
symbol (Symbol) – The symbol configuration of computation network.
ctx (Context or list of Context, optional) – The device context of training and prediction. To use multi GPU training, pass in a list of gpu contexts.
num_epoch (int, optional) – Training parameter, number of training epochs(epochs).
epoch_size (int, optional) – Number of batches in a epoch. In default, it is set to
ceil(num_train_examples / batch_size)
.optimizer (str or Optimizer, optional) – Training parameter, name or optimizer object for training.
initializer (initializer function, optional) – Training parameter, the initialization scheme used.
numpy_batch_size (int, optional) – The batch size of training data. Only needed when input array is numpy.
arg_params (dict of str to NDArray, optional) – Model parameter, dict of name to NDArray of net’s weights.
aux_params (dict of str to NDArray, optional) – Model parameter, dict of name to NDArray of net’s auxiliary states.
allow_extra_params (boolean, optional) – Whether allow extra parameters that are not needed by symbol to be passed by aux_params and
arg_params
. If this is True, no error will be thrown whenaux_params
andarg_params
contain more parameters than needed.begin_epoch (int, optional) – The begining training epoch.
kwargs (dict) – The additional keyword arguments passed to optimizer.
-
__init__
(symbol, ctx=None, num_epoch=None, epoch_size=None, optimizer='sgd', initializer=<mxnet.initializer.Uniform object>, numpy_batch_size=128, arg_params=None, aux_params=None, allow_extra_params=False, begin_epoch=0, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
(symbol[, ctx, num_epoch, …])Initialize self.
create
(symbol, X[, y, ctx, num_epoch, …])Functional style to create a model.
fit
(X[, y, eval_data, eval_metric, …])Fit the model.
load
(prefix, epoch[, ctx])Load model checkpoint from file.
predict
(X[, num_batch, return_data, reset])Run the prediction, always only use one device.
save
(prefix[, epoch])Checkpoint the model checkpoint into file.
score
(X[, eval_metric, num_batch, …])Run the model given an input and calculate the score as assessed by an evaluation metric.