mxnet.module.SequentialModule¶
-
class
mxnet.module.
SequentialModule
(logger=<module 'logging' from '/var/lib/jenkins/miniconda3/envs/mxnet-docs/lib/python3.7/logging/__init__.py'>)[source]¶ A SequentialModule is a container module that can chain multiple modules together.
Note
Building a computation graph with this kind of imperative container is less flexible and less efficient than the symbolic graph. So, this should be only used as a handy utility.
-
__init__
(logger=<module 'logging' from '/var/lib/jenkins/miniconda3/envs/mxnet-docs/lib/python3.7/logging/__init__.py'>)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([logger])Initialize self.
add
(module, **kwargs)Add a module to the chain.
backward
([out_grads])Backward computation.
bind
(data_shapes[, label_shapes, …])Binds the symbols to construct executors.
fit
(train_data[, eval_data, eval_metric, …])Trains the module parameters.
forward
(data_batch[, is_train])Forward computation.
forward_backward
(data_batch)A convenient function that calls both
forward
andbackward
.get_input_grads
([merge_multi_context])Gets the gradients with respect to the inputs of the module.
get_outputs
([merge_multi_context])Gets outputs from a previous forward computation.
get_params
()Gets current parameters.
get_states
([merge_multi_context])Gets states from all devices
init_optimizer
([kvstore, optimizer, …])Installs and initializes optimizers.
init_params
([initializer, arg_params, …])Initializes parameters.
install_monitor
(mon)Installs monitor on all executors.
iter_predict
(eval_data[, num_batch, reset, …])Iterates over predictions.
load_params
(fname)Loads model parameters from file.
predict
(eval_data[, num_batch, …])Runs prediction and collects the outputs.
prepare
(data_batch[, sparse_row_id_fn])Prepares the module for processing a data batch.
save_params
(fname)Saves model parameters to file.
score
(eval_data, eval_metric[, num_batch, …])Runs prediction on
eval_data
and evaluates the performance according to the giveneval_metric
.set_params
(arg_params, aux_params[, …])Assigns parameter and aux state values.
set_states
([states, value])Sets value for states.
update
()Updates parameters according to installed optimizer and the gradient computed in the previous forward-backward cycle.
update_metric
(eval_metric, labels[, pre_sliced])Evaluates and accumulates evaluation metric on outputs of the last forward computation.
Attributes
META_AUTO_WIRING
META_TAKE_LABELS
data_names
A list of names for data required by this module.
data_shapes
Gets data shapes.
label_shapes
Gets label shapes.
output_names
A list of names for the outputs of this module.
output_shapes
Gets output shapes.
symbol
Gets the symbol associated with this module.
-