Trainer¶
-
class
mxnet.gluon.
Trainer
(params, optimizer, optimizer_params=None, kvstore='device', compression_params=None, update_on_kvstore=None)[source]¶ Applies an Optimizer on a set of Parameters. Trainer should be used together with autograd.
Note
For the following cases, updates will always happen on kvstore, i.e., you cannot set update_on_kvstore=False.
dist kvstore with sparse weights or sparse gradients
dist async kvstore
optimizer.lr_scheduler is not None
- Parameters
params (ParameterDict) – The set of parameters to optimize.
optimizer (str or Optimizer) – The optimizer to use. See help on Optimizer for a list of available optimizers.
optimizer_params (dict) – Key-word arguments to be passed to optimizer constructor. For example, {‘learning_rate’: 0.1}. All optimizers accept learning_rate, wd (weight decay), clip_gradient, and lr_scheduler. See each optimizer’s constructor for a list of additional supported arguments.
kvstore (str or KVStore) – kvstore type for multi-gpu and distributed training. See help on
mxnet.kvstore.create
for more information.compression_params (dict) – Specifies type of gradient compression and additional arguments depending on the type of compression being used. For example, 2bit compression requires a threshold. Arguments would then be {‘type’:‘2bit’, ‘threshold’:0.5} See mxnet.KVStore.set_gradient_compression method for more details on gradient compression.
update_on_kvstore (bool, default None) – Whether to perform parameter updates on kvstore. If None, then trainer will choose the more suitable option depending on the type of kvstore.
Properties –
---------- –
learning_rate (float) – The current learning rate of the optimizer. Given an Optimizer object optimizer, its learning rate can be accessed as optimizer.learning_rate.
Updating parameters¶
|
Makes one step of parameter update. |
For each parameter, reduce the gradients from different contexts. |
|
|
Makes one step of parameter update. |
Trainer States¶
|
Loads trainer states (e.g. |
|
Saves trainer states (e.g. |
Learning rate¶
Sets a new learning rate of the optimizer. |