mxnet.metric.TopKAccuracy¶
-
class
mxnet.metric.
TopKAccuracy
(top_k=1, name='top_k_accuracy', output_names=None, label_names=None)[source]¶ Computes top k predictions accuracy.
TopKAccuracy differs from Accuracy in that it considers the prediction to be
True
as long as the ground truth label is in the top K predicated labels.If top_k =
1
, then TopKAccuracy is identical to Accuracy.- Parameters
top_k (int) – Whether targets are in top k predictions.
name (str) – Name of this metric instance for display.
output_names (list of str, or None) – Name of predictions that should be used when updating with update_dict. By default include all predictions.
label_names (list of str, or None) – Name of labels that should be used when updating with update_dict. By default include all labels.
Examples
>>> np.random.seed(999) >>> top_k = 3 >>> labels = [mx.nd.array([2, 6, 9, 2, 3, 4, 7, 8, 9, 6])] >>> predicts = [mx.nd.array(np.random.rand(10, 10))] >>> acc = mx.metric.TopKAccuracy(top_k=top_k) >>> acc.update(labels, predicts) >>> print acc.get() ('top_k_accuracy', 0.3)
-
__init__
(top_k=1, name='top_k_accuracy', output_names=None, label_names=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([top_k, name, output_names, …])Initialize self.
get
()Gets the current evaluation result.
get_config
()Save configurations of metric.
get_global
()Gets the current global evaluation result.
get_global_name_value
()Returns zipped name and value pairs for global results.
get_name_value
()Returns zipped name and value pairs.
reset
()Resets the internal evaluation result to initial state.
reset_local
()Resets the local portion of the internal evaluation results to initial state.
update
(labels, preds)Updates the internal evaluation result.
update_dict
(label, pred)Update the internal evaluation with named label and pred