mxnet.metric.CustomMetric¶
-
class
mxnet.metric.CustomMetric(feval, name=None, allow_extra_outputs=False, output_names=None, label_names=None)[source]¶ Computes a customized evaluation metric.
The feval function can return a tuple of (sum_metric, num_inst) or return an int sum_metric.
- Parameters
feval (callable(label, pred)) – Customized evaluation function.
name (str) – The name of the metric. (the default is None).
allow_extra_outputs (bool, optional) – If true, the prediction outputs can have extra outputs. This is useful in RNN, where the states are also produced in outputs for forwarding. (the default is False).
name – Name of this metric instance for display.
output_names (list of str, or None) – Name of predictions that should be used when updating with update_dict. By default include all predictions.
label_names (list of str, or None) – Name of labels that should be used when updating with update_dict. By default include all labels.
Examples
>>> predicts = [mx.nd.array(np.array([3, -0.5, 2, 7]).reshape(4,1))] >>> labels = [mx.nd.array(np.array([2.5, 0.0, 2, 8]).reshape(4,1))] >>> feval = lambda x, y : (x + y).mean() >>> eval_metrics = mx.metric.CustomMetric(feval=feval) >>> eval_metrics.update(labels, predicts) >>> print eval_metrics.get() ('custom(<lambda>)', 6.0)
-
__init__(feval, name=None, allow_extra_outputs=False, output_names=None, label_names=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__(feval[, name, allow_extra_outputs, …])Initialize self.
get()Gets the current evaluation result.
get_config()Save configurations of metric.
get_global()Gets the current global evaluation result.
get_global_name_value()Returns zipped name and value pairs for global results.
get_name_value()Returns zipped name and value pairs.
reset()Resets the internal evaluation result to initial state.
reset_local()Resets the local portion of the internal evaluation results to initial state.
update(labels, preds)Updates the internal evaluation result.
update_dict(label, pred)Update the internal evaluation with named label and pred