mxnet.ndarray.random.exponential¶
-
mxnet.ndarray.random.
exponential
(scale=1, shape=_Null, dtype=_Null, ctx=None, out=None, **kwargs)[source]¶ Draw samples from an exponential distribution.
Its probability density function is
\[f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),\]for x > 0 and 0 elsewhere. beta is the scale parameter, which is the inverse of the rate parameter lambda = 1/beta.
- Parameters
scale (float or NDArray, optional) – The scale parameter, beta = 1/lambda.
shape (int or tuple of ints, optional) – The number of samples to draw. If shape is, e.g., (m, n) and scale is a scalar, output shape will be (m, n). If scale is an NDArray with shape, e.g., (x, y), then output will have shape (x, y, m, n), where m*n samples are drawn for each entry in scale.
dtype ({'float16', 'float32', 'float64'}, optional) – Data type of output samples. Default is ‘float32’
ctx (Context, optional) – Device context of output. Default is current context. Overridden by scale.context when scale is an NDArray.
out (NDArray, optional) – Store output to an existing NDArray.
Examples
>>> mx.nd.random.exponential(1) [ 0.79587454] <NDArray 1 @cpu(0)> >>> mx.nd.random.exponential(1, shape=(2,)) [ 0.89856035 1.25593066] <NDArray 2 @cpu(0)> >>> scale = mx.nd.array([1,2,3]) >>> mx.nd.random.exponential(scale, shape=2) [[ 0.41063145 0.42140478] [ 2.59407091 10.12439728] [ 2.42544937 1.14260709]] <NDArray 3x2 @cpu(0)>