mxnet.metric.CompositeEvalMetric¶
-
class
mxnet.metric.
CompositeEvalMetric
(metrics=None, name='composite', output_names=None, label_names=None)[source]¶ Manages multiple evaluation metrics.
- Parameters
metrics (list of EvalMetric) – List of child metrics.
name (str) – Name of this metric instance for display.
output_names (list of str, or None) – Name of predictions that should be used when updating with update_dict. By default include all predictions.
label_names (list of str, or None) – Name of labels that should be used when updating with update_dict. By default include all labels.
Examples
>>> predicts = [mx.nd.array([[0.3, 0.7], [0, 1.], [0.4, 0.6]])] >>> labels = [mx.nd.array([0, 1, 1])] >>> eval_metrics_1 = mx.metric.Accuracy() >>> eval_metrics_2 = mx.metric.F1() >>> eval_metrics = mx.metric.CompositeEvalMetric() >>> for child_metric in [eval_metrics_1, eval_metrics_2]: >>> eval_metrics.add(child_metric) >>> eval_metrics.update(labels = labels, preds = predicts) >>> print eval_metrics.get() (['accuracy', 'f1'], [0.6666666666666666, 0.8])
-
__init__
(metrics=None, name='composite', output_names=None, label_names=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([metrics, name, output_names, …])Initialize self.
add
(metric)Adds a child metric.
get
()Returns the current evaluation result.
get_config
()Save configurations of metric.
get_global
()Returns the current evaluation result.
get_global_name_value
()Returns zipped name and value pairs for global results.
get_metric
(index)Returns a child metric.
get_name_value
()Returns zipped name and value pairs.
reset
()Resets the internal evaluation result to initial state.
reset_local
()Resets the local portion of the internal evaluation results to initial state.
update
(labels, preds)Updates the internal evaluation result.
update_dict
(labels, preds)Update the internal evaluation with named label and pred