mxnet.optimizer.NAG¶
-
class
mxnet.optimizer.
NAG
(momentum=0.0, **kwargs)[source]¶ Nesterov accelerated SGD.
This optimizer updates each weight by:
state = momentum * state + grad + wd * weight weight = weight - (lr * (grad + momentum * state))
- Parameters
momentum (float, optional) – The momentum value.
multi_precision (bool, optional) –
Flag to control the internal precision of the optimizer.:
False: results in using the same precision as the weights (default), True: makes internal 32-bit copy of the weights and applies gradients in 32-bit precision even if actual weights used in the model have lower precision. Turning this on can improve convergence and accuracy when training with float16.
-
__init__
(momentum=0.0, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([momentum])Initialize self.
create_optimizer
(name, **kwargs)Instantiates an optimizer with a given name and kwargs.
create_state
(index, weight)Creates auxiliary state for a given weight.
create_state_multi_precision
(index, weight)Creates auxiliary state for a given weight, including FP32 high precision copy if original weight is FP16.
register
(klass)Registers a new optimizer.
set_learning_rate
(lr)Sets a new learning rate of the optimizer.
set_lr_mult
(args_lr_mult)Sets an individual learning rate multiplier for each parameter.
set_lr_scale
(args_lrscale)[DEPRECATED] Sets lr scale.
set_wd_mult
(args_wd_mult)Sets an individual weight decay multiplier for each parameter.
update
(index, weight, grad, state)Updates the given parameter using the corresponding gradient and state.
update_multi_precision
(index, weight, grad, …)Updates the given parameter using the corresponding gradient and state.
Attributes
learning_rate
opt_registry