mxnet.module.Module¶
-
class
mxnet.module.Module(symbol, data_names=('data', ), label_names=('softmax_label', ), logger=<module 'logging' from '/var/lib/jenkins/miniconda3/envs/mxnet-docs/lib/python3.7/logging/__init__.py'>, context=cpu(0), work_load_list=None, fixed_param_names=None, state_names=None, group2ctxs=None, compression_params=None)[source]¶ Module is a basic module that wrap a Symbol. It is functionally the same as the FeedForward model, except under the module API.
- Parameters
symbol (Symbol) –
data_names (list of str) – Defaults to (‘data’) for a typical model used in image classification.
label_names (list of str) – Defaults to (‘softmax_label’) for a typical model used in image classification.
logger (Logger) – Defaults to logging.
context (Context or list of Context) – Defaults to
mx.cpu().work_load_list (list of number) – Default
None, indicating uniform workload.fixed_param_names (list of str) – Default
None, indicating no network parameters are fixed.state_names (list of str) – states are similar to data and label, but not provided by data iterator. Instead they are initialized to 0 and can be set by set_states().
group2ctxs (dict of str to context or list of context,) – or list of dict of str to context Default is None. Mapping the ctx_group attribute to the context assignment.
compression_params (dict) – Specifies type of gradient compression and additional arguments depending on the type of compression being used. For example, 2bit compression requires a threshold. Arguments would then be {‘type’:‘2bit’, ‘threshold’:0.5} See mxnet.KVStore.set_gradient_compression method for more details on gradient compression.
-
__init__(symbol, data_names=('data', ), label_names=('softmax_label', ), logger=<module 'logging' from '/var/lib/jenkins/miniconda3/envs/mxnet-docs/lib/python3.7/logging/__init__.py'>, context=cpu(0), work_load_list=None, fixed_param_names=None, state_names=None, group2ctxs=None, compression_params=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__(symbol[, data_names, label_names, …])Initialize self.
backward([out_grads])Backward computation.
bind(data_shapes[, label_shapes, …])Binds the symbols to construct executors.
borrow_optimizer(shared_module)Borrows optimizer from a shared module.
fit(train_data[, eval_data, eval_metric, …])Trains the module parameters.
forward(data_batch[, is_train])Forward computation.
forward_backward(data_batch)A convenient function that calls both
forwardandbackward.get_input_grads([merge_multi_context])Gets the gradients with respect to the inputs of the module.
get_outputs([merge_multi_context])Gets outputs of the previous forward computation.
get_params()Gets current parameters.
get_states([merge_multi_context])Gets states from all devices.
init_optimizer([kvstore, optimizer, …])Installs and initializes optimizers.
init_params([initializer, arg_params, …])Initializes the parameters and auxiliary states.
install_monitor(mon)Installs monitor on all executors.
iter_predict(eval_data[, num_batch, reset, …])Iterates over predictions.
load(prefix, epoch[, load_optimizer_states])Creates a model from previously saved checkpoint.
load_optimizer_states(fname)Loads optimizer (updater) state from a file.
load_params(fname)Loads model parameters from file.
predict(eval_data[, num_batch, …])Runs prediction and collects the outputs.
prepare(data_batch[, sparse_row_id_fn])Prepares the module for processing a data batch.
reshape(data_shapes[, label_shapes])Reshapes the module for new input shapes.
save_checkpoint(prefix, epoch[, …])Saves current progress to checkpoint.
save_optimizer_states(fname)Saves optimizer (updater) state to a file.
save_params(fname)Saves model parameters to file.
score(eval_data, eval_metric[, num_batch, …])Runs prediction on
eval_dataand evaluates the performance according to the giveneval_metric.set_params(arg_params, aux_params[, …])Assigns parameter and aux state values.
set_states([states, value])Sets value for states.
update()Updates parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch.
update_metric(eval_metric, labels[, pre_sliced])Evaluates and accumulates evaluation metric on outputs of the last forward computation.
Attributes
data_namesA list of names for data required by this module.
data_shapesGets data shapes.
label_namesA list of names for labels required by this module.
label_shapesGets label shapes.
output_namesA list of names for the outputs of this module.
output_shapesGets output shapes.
symbolGets the symbol associated with this module.