mxnet.executor.Executor¶
-
class
mxnet.executor.
Executor
(handle, symbol, ctx, grad_req, group2ctx)[source]¶ Executor is the object providing efficient symbolic graph execution and optimization.
Examples
>>> # typical approach to create an executor is to bind symbol >>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> c = 2 * a + b >>> texec = c.bind(mx.cpu(), {'a': mx.nd.array([1,2]), 'b':mx.nd.array([2,3])})
-
__init__
(handle, symbol, ctx, grad_req, group2ctx)[source]¶ Constructor, used Symbol.bind and Symbol.simple_bind instead.
- Parameters
handle (ExecutorHandle) – ExecutorHandle generated by calling bind.
See also
Symbol.bind()
to create executor.
Methods
__init__
(handle, symbol, ctx, grad_req, …)Constructor, used Symbol.bind and Symbol.simple_bind instead.
backward
([out_grads, is_train])Do backward pass to get the gradient of arguments.
copy_params_from
(arg_params[, aux_params, …])Copy parameters from arg_params, aux_params into executor’s internal array.
debug_str
()Get a debug string about internal execution plan.
forward
([is_train])Calculate the outputs specified by the bound symbol.
reshape
([partial_shaping, allow_up_sizing])Return a new executor with the same symbol and shared memory, but different input/output shapes.
set_monitor_callback
(callback)Install callback for monitor.
Attributes
arg_dict
Get dictionary representation of argument arrrays.
aux_dict
Get dictionary representation of auxiliary states arrays.
grad_dict
Get dictionary representation of gradient arrays.
output_dict
Get dictionary representation of output arrays.
-