mxnet.ndarray.NDArray.__setitem__¶
-
NDArray.
__setitem__
(key, value)[source]¶ x.__setitem__(i, y) <=> x[i]=y
Sets value to self[key]. This functions supports advanced indexing defined in the following reference with some restrictions.
If key is a list type, only a list of integers is supported, e.g. key=[1, 2] is supported, while not for key=[[1, 2]].
Ellipsis (…) and np.newaxis are not supported.
Boolean array indexing is not supported.
- Parameters
key (int, mxnet.ndarray.slice, list, np.ndarray, NDArray, or tuple of all previous types) – The indexing key.
value (scalar or array-like object that can be broadcast to the shape of self[key]) – The value to set.
Examples
>>> x = mx.nd.zeros((2,3)) >>> x[:] = 1 >>> x.asnumpy() array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) >>> x.asnumpy() array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) >>> x[:,1:2] = 2 >>> x.asnumpy() array([[ 1., 2., 1.], [ 1., 2., 1.]], dtype=float32) >>> x[1:2,1:] = 3 >>> x.asnumpy() array([[ 1., 2., 1.], [ 1., 3., 3.]], dtype=float32) >>> x[1:,0:2] = mx.nd.zeros((1,2)) >>> x.asnumpy() array([[ 1., 2., 1.], [ 0., 0., 3.]], dtype=float32) >>> x[1,2] = 4 >>> x.asnumpy() array([[ 1., 2., 1.], [ 0., 0., 4.]], dtype=float32) >>> x[[0], [1, 2]] = 5 >>> x.asnumpy() array([[ 1., 5., 5.], [ 0., 0., 4.]], dtype=float32) >>> x[::-1, 0:2:2] = [6] >>> x.asnumpy() array([[ 6., 5., 5.], [ 6., 0., 4.]], dtype=float32)