mxnet.io.PrefetchingIter¶
-
class
mxnet.io.PrefetchingIter(iters, rename_data=None, rename_label=None)[source]¶ Performs pre-fetch for other data iterators.
This iterator will create another thread to perform
iter_nextand then store the data in memory. It potentially accelerates the data read, at the cost of more memory usage.- Parameters
iters (DataIter or list of DataIter) – The data iterators to be pre-fetched.
rename_data (None or list of dict) – The i-th element is a renaming map for the i-th iter, in the form of {‘original_name’ : ‘new_name’}. Should have one entry for each entry in iter[i].provide_data.
rename_label (None or list of dict) – Similar to
rename_data.
Examples
>>> iter1 = mx.io.NDArrayIter({'data':mx.nd.ones((100,10))}, batch_size=25) >>> iter2 = mx.io.NDArrayIter({'data':mx.nd.ones((100,10))}, batch_size=25) >>> piter = mx.io.PrefetchingIter([iter1, iter2], ... rename_data=[{'data': 'data_1'}, {'data': 'data_2'}]) >>> print(piter.provide_data) [DataDesc[data_1,(25, 10L),<type 'numpy.float32'>,NCHW], DataDesc[data_2,(25, 10L),<type 'numpy.float32'>,NCHW]]
-
__init__(iters, rename_data=None, rename_label=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__(iters[, rename_data, rename_label])Initialize self.
getdata()Get data of current batch.
getindex()Get index of the current batch.
getlabel()Get label of the current batch.
getpad()Get the number of padding examples in the current batch.
iter_next()Move to the next batch.
next()Get next data batch from iterator.
reset()Reset the iterator to the begin of the data.
Attributes
provide_dataprovide_label