How to Create New MXNet Operators (Layers)¶
This tutorials walks you through the process of creating new MXNet operators (or layers). We’ve done our best to provide high-speed operators for most common use cases. However, if you’re engaged in research, there’s a good chance you’ll want to define custom layers, like a novel loss function. In these cases, you have two options:
Use CustomOp to write new operators using a front-end language (e.g., Python) that run on CPUs or GPUs. Depending on your implementation, this can range from very fast (if you only use operators under mx.nd) to very slow (if you copy out the data, using
.asnumpy()
).Use C++/mshadow (CUDA). This provides the best performance, but can be difficult if you’re not familiar with MXNet, mshadow, or Cuda.
CustomOp¶
Implementing an operator in Python is simple. As an example, let’s
create a softmax operator. Start by subclassing
mxnet.operator.CustomOp
, and then override a few methods:
import os
import mxnet as mx
import numpy as np
class Softmax(mx.operator.CustomOp):
def forward(self, is_train, req, in_data, out_data, aux):
x = in_data[0].asnumpy()
y = np.exp(x - x.max(axis=1).reshape((x.shape[0], 1)))
y /= y.sum(axis=1).reshape((x.shape[0], 1))
self.assign(out_data[0], req[0], mx.nd.array(y))
We defined the computation for the forward pass of our operator. The
forward function takes a list of input and a list of output NDArrays.
For convenience, we called .asnumpy()
on the first NDArray in input
and convert it to a CPU-based NumPy array. This can be very slow. If you
want the best performance, keep data in the NDArray format and use
operators under mx.nd to do the computation.
At the end, we used CustomOp.assign to assign the resulting array y to out_data[0]. It handles assignment based on the value of req, which can be ‘write’, ‘add’, or ‘null’.
Then do the same for the backward pass:
def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
l = in_data[1].asnumpy().ravel().astype(np.int)
y = out_data[0].asnumpy()
y[np.arange(l.shape[0]), l] -= 1.0
self.assign(in_grad[0], req[0], mx.nd.array(y))
Softmax defines the computation of our custom operator, but you still need to define its input/output format by subclassing mx.operator.CustomOpProp. First, register the new operator with the name ‘softmax’:
@mx.operator.register("softmax")
class SoftmaxProp(mx.operator.CustomOpProp):
Then, call the base constructor with need_top_grad=False
because
softmax is a loss layer and you don’t need gradient input from preceding
layers:
def __init__(self):
super(SoftmaxProp, self).__init__(need_top_grad=False)
Then declare the input and output:
def list_arguments(self):
return ['data', 'label']
def list_outputs(self):
return ['output']
Note that list_arguments declares both input and parameter. We
recommend ordering them as follows:
['input1', 'input2', ... , 'weight1', 'weight2', ...]
Next, provide infer_shape
to declare the shape of the output/weight
and check the consistency of the input shapes:
def infer_shape(self, in_shape):
data_shape = in_shape[0]
label_shape = (in_shape[0][0],)
output_shape = in_shape[0]
return [data_shape, label_shape], [output_shape], []
The first axis of an input/output tensor corresponds to different
examples within the batch. The label is a set of integers, one for each
data entry, and the output has the same shape as the input. The
infer_shape
function should always return three lists in this order:
inputs, outputs, and auxiliary states (which we don’t have here), even
if one of them is empty.
Optionally, you can also define infer_type
to declare the input and
output data type of your operator. Supported types are np.float32
,
np.float64
, np.float16
, np.uint8
, and np.int32
.
def infer_type(self, in_type):
dtype = in_type[0]
return [dtype, dtype], [dtype], []
Finally, define a create_operator function that will be called by the back end to create an instance of softmax:
def create_operator(self, ctx, shapes, dtypes):
return Softmax()
To use the custom operator, create a mx.sym.Custom symbol with op_type as the registered name:
mlp = mx.symbol.Custom(data=fc3, name='softmax', op_type='softmax')
Please see the full code for this example here.
C++¶
With MXNet v0.9 (the NNVM refactor) or later, creating new operators has become easier. Operators are now registered with NNVM. The following code is an example on how to register an operator (checkout src/operator/tensor for more examples):
NNVM_REGISTER_OP(abs)
.MXNET_DESCRIBE("Take absolute value of the src")
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FInferShape>("FInferShape", ElemwiseShape<1,1>);
The syntax is quite simple, we register the operator with a name, then
set number of inputs and outputs. You can register attributes with any
key (FInferShape
for example) to any operator, without having to
modify a central class interface definition.
Operator Attribute System¶
One of the biggest improvements brought by NNVM is the operator attribute system. This is like traits for types in common languages like C++. We can register any attribute to any operator, with the syntax
NNVM_REGISTER_OP(op-name)
.set_attr<AttributeType>("AttributeKey", CorrespondingAttributeObject);
These attributes can be retrieved later for various purposes. For
example, FInferShape
is used for shape inference, FCompute<cpu>
is used for carrying out actual computation on CPU.
As long as all attributes registered with the same key have the same type, we can register any attributes to operators. The more attribute an operator provides, the more information the system can use for optimization.
List of basic attributes¶
In this section, we will go through the basic attributes MXNet expect for all operators. You can find the definition for them in the following two files:
Descriptions (Optional)¶
.describe(comment)
adds a comment to the operator. Use
.MXNET_DESCRIBE(comment)
to add the current file name and line
number to comment.
Attribute Parser (Optional)¶
Set attribute parser with .set_attr_parser(PARSER)
where PARSER is a
function with prototype void(nnvm::NodeAttr* attrs)
. This function
should parse the key-word arguments in attrs->dict
and store the
result in attrs->parsed
.
Simple arguments can be parsed like
NNVM_REGISTER_OP(scalar_op)
.set_attr_parser(
[](NodeAttrs* attrs) {
attrs->parsed = std::stod(attrs->dict["scalar"]);
})
The parsed arguments can then be accessed in other attribute functions with
double alpha = nnvm::get<double>(attrs.parsed);
More complex ops can use dmlc::Parameters
and ParamParser
(defined in operator_common.h) for parsing:
#include <dmlc/parameter.h>
#include <operator_common.h>
struct ActivationParam : public dmlc::Parameter<ActivationParam> {
// use int for enumeration
int act_type;
DMLC_DECLARE_PARAMETER(ActivationParam) {
DMLC_DECLARE_FIELD(act_type)
.add_enum("relu", activation::kReLU)
.add_enum("sigmoid", activation::kSigmoid)
.add_enum("tanh", activation::kTanh)
.add_enum("softrelu", activation::kSoftReLU)
.describe("Activation function to be applied.");
}
};
NNVM_REGISTER_OP(Activation)
.set_attr_parser(ParamParser<ActivationParam>);
// access with:
// const ActivationParam& param = nnvm::get<ActivationParam>(attrs.parsed);
Inputs & Outputs¶
Number of inputs/outputs can be set with .set_num_inputs(n_in)
and
.set_num_outputs(n_out)
where n_in and n_out are integers.
Alternatively, if the number of inputs/outputs is variable and depends
on arguments, you can set n_in
/n_out
to functions with prototype
uint32_t(const nnvm::NodeAttrs& attrs)
that return the number of
inputs/outputs based on parsed arguments.
Outputs can be made invisible to other operators by registering
FNumVisibleOutputs
and returning an integer smaller than n_out
.
Inputs/outputs can be named by registering FListInputNames
and
FListOutputNames
with prototype
std::vector<std::string>(const NodeAttrs& attrs)
.
Argument Descriptions¶
Set argument descriptions with .add_argument(name, type, comment)
.
This is necessary for operators to be properly called imperatively.
First, add NDArray arguments num_inputs
times with type “NDArray” or
one time with type “NDArray[]” for ops with variable length inputs.
Then add key-word arguments with proper type (float, string, etc).
Operators that parse key-word arguments with dmlc::Parameter
can add
argument descriptions in bulk with
.add_arguments(ActivationParam::__FIELDS__())
(NDArray arguments
still need to be manually added with type “NDArray”).
FInferShape or TIsBackward (for Backward Only Ops)¶
Normally operators need to have FInferShape
with prototype
bool(const nnvm::NodeAttrs& attrs, std::vector<TShape> *in_attrs, std::vector<TShape> *out_attrs)
.
FInferShape
fills unknown shapes (shape.ndim() == 0
) in
in_attrs/out_attrs based on known shapes in in_attrs/out_attrs. Use
ElemwiseShape<n_in, n_out>
for simple operators with uniform shapes.
Operators that are only used for a backward pass can instead register
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
and their shapes
with be copied from the corresponding forward operators.
FInferType¶
Similar to FInferShape
, FInferType
fills unknown types (-1)
based on known types. Use ElemwiseType<n_in, n_out>
for simple
operators with uniform types. Operators that registered TIsBackward
don’t need to register this.
FInplaceOption (Optional)¶
FInplaceOption
with prototype
std::vector<std::pair<int, int> >(const NodeAttrs& attrs)
specifies
which input/output pairs can be computed in-place and share memory with
each other. Each pair (i, j) in the returned list means that the i-th
input can share memory with the j-th output.
FGradient (Optional for imperative use, required for symbolic use)¶
If an operator has gradient, it can be described with FGradient
with
prototype
std::vector<nnvm::NodeEntry>(const nnvm::NodePtr& n,
const std::vector<nnvm::NodeEntry>& ograds)
Use utility functions ElemwiseGradUseIn{op_name}
,
ElemwiseGradUseOut{op_name}
, ElemwiseGradUseNone{op_name}
for
ops that need corresponding forward op’s input, output or nothing to
calculating gradient.
For more complicated patterns, use
MakeGradNode(op_name, n, heads, dict)
to create gradient entries,
where heads are input entries to the backward op, composed from ograds
and n->inputs.
FCompute<xpu>¶
Simple operators can register FCompute with
.set_attr<FCompute>("FCompute<cpu>", ...)
and
.set_attr<FCompute>("FCompute<gpu>", ...)
for both CPU and
(optionally) GPU computation.
FCompute has prototype
void(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs)
req
has the same length as outputs
. Each entry of req
specifies how the corresponding output
should be written to.
OpReqType
is defined as:
enum OpReqType {
kNullOp,
kWriteTo,
kWriteInplace,
kAddTo
};
Normally, the req
of all outputs
should be kWriteTo
, meaning
that the provided outputs
tensor is a raw memory block, so the
operator should write results directly into it. In some cases, for
example, when calculating the gradient tensor, it would be great if we
could accumulate the result, rather than directly overwrite the tensor
contents so that no extra space needs to be created each time. In such
cases, the corresponding req
is set to kAddTo
, indicating that a
+=
should be used.
Example: abs operator¶
NNVM_REGISTER_OP(abs)
.MXNET_DESCRIBE("Take absolute value of the src")
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FInferShape>("FInferShape", ElemwiseShape<1, 1>)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}};
})
.set_attr<FCompute>("FCompute<cpu>", UnaryCompute<cpu, mshadow_op::abs>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_abs"});
.add_argument("data", "NDArray", "Source input")
NNVM_REGISTER_OP(_backward_abs)
.set_num_inputs(2)
.set_num_outputs(1)
.set_attr<nnvm::FInferShape>("FInferShape", ElemwiseShape<2, 1>)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<2, 1>)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}, {1, 0}};
})
.set_attr<FCompute>("FCompute<cpu>", BinaryCompute<cpu, backward_grad<mshadow_op::sign> >);
Legacy Operators¶
For the legacy (pre 0.9) way of defining operators with C++, please see: - Developer Guide - Operators - Developer Guide - SimpleOp