mxnet.optimizer.SGLD¶
-
class
mxnet.optimizer.SGLD(**kwargs)[source]¶ Stochastic Gradient Riemannian Langevin Dynamics.
This class implements the optimizer described in the paper Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex, available at https://papers.nips.cc/paper/4883-stochastic-gradient-riemannian-langevin-dynamics-on-the-probability-simplex.pdf.
Methods
__init__(**kwargs)Initialize self.
create_optimizer(name, **kwargs)Instantiates an optimizer with a given name and kwargs.
create_state(index, weight)Creates auxiliary state for a given weight.
create_state_multi_precision(index, weight)Creates auxiliary state for a given weight, including FP32 high precision copy if original weight is FP16.
register(klass)Registers a new optimizer.
set_learning_rate(lr)Sets a new learning rate of the optimizer.
set_lr_mult(args_lr_mult)Sets an individual learning rate multiplier for each parameter.
set_lr_scale(args_lrscale)[DEPRECATED] Sets lr scale.
set_wd_mult(args_wd_mult)Sets an individual weight decay multiplier for each parameter.
update(index, weight, grad, state)Updates the given parameter using the corresponding gradient and state.
update_multi_precision(index, weight, grad, …)Updates the given parameter using the corresponding gradient and state.
Attributes
learning_rateopt_registry