mxnet.ndarray.logical_and¶
-
mxnet.ndarray.
logical_and
(lhs, rhs)[source]¶ Returns the result of element-wise logical and comparison operation with broadcasting.
For each element in input arrays, return 1(true) if lhs elements and rhs elements are true, otherwise return 0(false).
Equivalent to
lhs and rhs
andmx.nd.broadcast_logical_and(lhs, rhs)
.Note
If the corresponding dimensions of two arrays have the same size or one of them has size 1, then the arrays are broadcastable to a common shape.
- Parameters
lhs (scalar or mxnet.ndarray.array) – First input of the function.
rhs (scalar or mxnet.ndarray.array) – Second input of the function. If
lhs.shape != rhs.shape
, they must be broadcastable to a common shape.
- Returns
Output array of boolean values.
- Return type
Examples
>>> x = mx.nd.ones((2,3)) >>> y = mx.nd.arange(2).reshape((2,1)) >>> z = mx.nd.arange(2).reshape((1,2)) >>> x.asnumpy() array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) >>> y.asnumpy() array([[ 0.], [ 1.]], dtype=float32) >>> z.asnumpy() array([[ 0., 1.]], dtype=float32) >>> mx.nd.logical_and(x, 1).asnumpy() array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) >>> mx.nd.logical_and(x, y).asnumpy() array([[ 0., 0., 0.], [ 1., 1., 1.]], dtype=float32) >>> mx.nd.logical_and(z, y).asnumpy() array([[ 0., 0.], [ 0., 1.]], dtype=float32)