mxnet.initializer.Uniform¶
-
class
mxnet.initializer.
Uniform
(scale=0.07)[source]¶ Initializes weights with random values uniformly sampled from a given range.
- Parameters
scale (float, optional) – The bound on the range of the generated random values. Values are generated from the range [-scale, scale]. Default scale is 0.07.
Example
>>> # Given 'module', an instance of 'mxnet.module.Module', initialize weights >>> # to random values uniformly sampled between -0.1 and 0.1. ... >>> init = mx.init.Uniform(0.1) >>> module.init_params(init) >>> for dictionary in module.get_params(): ... for key in dictionary: ... print(key) ... print(dictionary[key].asnumpy()) ... fullyconnected0_weight [[ 0.01360891 -0.02144304 0.08511933]]
Methods
__init__
([scale])Initialize self.
dumps
()Saves the initializer to string
set_verbosity
([verbose, print_func])Switch on/off verbose mode