mxnet.gluon.contrib.rnn.Conv3DLSTMCell¶
-
class
mxnet.gluon.contrib.rnn.Conv3DLSTMCell(input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0, 0, 0), i2h_dilate=(1, 1, 1), h2h_dilate=(1, 1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCDHW', activation='tanh', prefix=None, params=None)[source]¶ 3D Convolutional LSTM network cell.
“Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting” paper. Xingjian et al. NIPS2015
\[\begin{split}\begin{array}{ll} i_t = \sigma(W_i \ast x_t + R_i \ast h_{t-1} + b_i) \\ f_t = \sigma(W_f \ast x_t + R_f \ast h_{t-1} + b_f) \\ o_t = \sigma(W_o \ast x_t + R_o \ast h_{t-1} + b_o) \\ c^\prime_t = tanh(W_c \ast x_t + R_c \ast h_{t-1} + b_c) \\ c_t = f_t \circ c_{t-1} + i_t \circ c^\prime_t \\ h_t = o_t \circ tanh(c_t) \\ \end{array}\end{split}\]- Parameters
input_shape (tuple of int) – Input tensor shape at each time step for each sample, excluding dimension of the batch size and sequence length. Must be consistent with conv_layout. For example, for layout ‘NCDHW’ the shape should be (C, D, H, W).
hidden_channels (int) – Number of output channels.
i2h_kernel (int or tuple of int) – Input convolution kernel sizes.
h2h_kernel (int or tuple of int) – Recurrent convolution kernel sizes. Only odd-numbered sizes are supported.
i2h_pad (int or tuple of int, default (0, 0, 0)) – Pad for input convolution.
i2h_dilate (int or tuple of int, default (1, 1, 1)) – Input convolution dilate.
h2h_dilate (int or tuple of int, default (1, 1, 1)) – Recurrent convolution dilate.
i2h_weight_initializer (str or Initializer) – Initializer for the input weights matrix, used for the input convolutions.
h2h_weight_initializer (str or Initializer) – Initializer for the recurrent weights matrix, used for the input convolutions.
i2h_bias_initializer (str or Initializer, default zeros) – Initializer for the input convolution bias vectors.
h2h_bias_initializer (str or Initializer, default zeros) – Initializer for the recurrent convolution bias vectors.
conv_layout (str, default 'NCDHW') – Layout for all convolution inputs, outputs and weights. Options are ‘NCDHW’ and ‘NDHWC’.
activation (str or Block, default 'tanh') – Type of activation function used in c^prime_t. If argument type is string, it’s equivalent to nn.Activation(act_type=str). See
Activation()for available choices. Alternatively, other activation blocks such as nn.LeakyReLU can be used.prefix (str, default
'conv_lstm_’) – Prefix for name of layers (and name of weight if params is None).params (RNNParams, default None) – Container for weight sharing between cells. Created if None.
-
__init__(input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0, 0, 0), i2h_dilate=(1, 1, 1), h2h_dilate=(1, 1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCDHW', activation='tanh', prefix=None, params=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__(input_shape, hidden_channels, …)Initialize self.
apply(fn)Applies
fnrecursively to every child block as well as self.begin_state([batch_size, func])Initial state for this cell.
cast(dtype)Cast this Block to use another data type.
collect_params([select])Returns a
ParameterDictcontaining thisBlockand all of its children’s Parameters(default), also can returns the selectParameterDictwhich match some given regular expressions.export(path[, epoch])Export HybridBlock to json format that can be loaded by SymbolBlock.imports, mxnet.mod.Module or the C++ interface.
forward(inputs, states)Unrolls the recurrent cell for one time step.
hybrid_forward(F, inputs, states, …)Overrides to construct symbolic graph for this Block.
hybridize([active])Activates or deactivates
HybridBlocks recursively.infer_shape(*args)Infers shape of Parameters from inputs.
infer_type(*args)Infers data type of Parameters from inputs.
initialize([init, ctx, verbose, force_reinit])Initializes
Parameters of thisBlockand its children.load_parameters(filename[, ctx, …])Load parameters from file previously saved by save_parameters.
load_params(filename[, ctx, allow_missing, …])[Deprecated] Please use load_parameters.
name_scope()Returns a name space object managing a child
Blockand parameter names.register_child(block[, name])Registers block as a child of self.
register_forward_hook(hook)Registers a forward hook on the block.
register_forward_pre_hook(hook)Registers a forward pre-hook on the block.
reset()Reset before re-using the cell for another graph.
save_parameters(filename)Save parameters to file.
save_params(filename)[Deprecated] Please use save_parameters.
state_info([batch_size])shape and layout information of states
summary(*inputs)Print the summary of the model’s output and parameters.
unroll(length, inputs[, begin_state, …])Unrolls an RNN cell across time steps.
Attributes
nameName of this
Block, without ‘_’ in the end.paramsReturns this
Block’s parameter dictionary (does not include its children’s parameters).prefixPrefix of this
Block.