mxnet.optimizer.DCASGD¶
-
class
mxnet.optimizer.DCASGD(momentum=0.0, lamda=0.04, **kwargs)[source]¶ The DCASGD optimizer.
This class implements the optimizer described in Asynchronous Stochastic Gradient Descent with Delay Compensation for Distributed Deep Learning, available at https://arxiv.org/abs/1609.08326.
This optimizer accepts the following parameters in addition to those accepted by
Optimizer.- Parameters
momentum (float, optional) – The momentum value.
lamda (float, optional) – Scale DC value.
-
__init__(momentum=0.0, lamda=0.04, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__([momentum, lamda])Initialize self.
create_optimizer(name, **kwargs)Instantiates an optimizer with a given name and kwargs.
create_state(index, weight)Creates auxiliary state for a given weight.
create_state_multi_precision(index, weight)Creates auxiliary state for a given weight, including FP32 high precision copy if original weight is FP16.
register(klass)Registers a new optimizer.
set_learning_rate(lr)Sets a new learning rate of the optimizer.
set_lr_mult(args_lr_mult)Sets an individual learning rate multiplier for each parameter.
set_lr_scale(args_lrscale)[DEPRECATED] Sets lr scale.
set_wd_mult(args_wd_mult)Sets an individual weight decay multiplier for each parameter.
update(index, weight, grad, state)Updates the given parameter using the corresponding gradient and state.
update_multi_precision(index, weight, grad, …)Updates the given parameter using the corresponding gradient and state.
Attributes
learning_rateopt_registry