mxnet.optimizer.FTML¶
-
class
mxnet.optimizer.
FTML
(beta1=0.6, beta2=0.999, epsilon=1e-08, **kwargs)[source]¶ The FTML optimizer.
This class implements the optimizer described in FTML - Follow the Moving Leader in Deep Learning, available at http://proceedings.mlr.press/v70/zheng17a/zheng17a.pdf.
Denote time step by t. The optimizer updates the weight by:
rescaled_grad = clip(grad * rescale_grad + wd * weight, clip_gradient) v = beta2 * v + (1 - beta2) * square(rescaled_grad) d_t = (1 - power(beta1, t)) / lr * square_root(v / (1 - power(beta2, t))) + epsilon) z = beta1 * z + (1 - beta1) * rescaled_grad - (d_t - beta1 * d_(t-1)) * weight weight = - z / d_t
For details of the update algorithm, see
ftml_update
.This optimizer accepts the following parameters in addition to those accepted by
Optimizer
.- Parameters
beta1 (float, optional) – 0 < beta1 < 1. Generally close to 0.5.
beta2 (float, optional) – 0 < beta2 < 1. Generally close to 1.
epsilon (float, optional) – Small value to avoid division by 0.
-
__init__
(beta1=0.6, beta2=0.999, epsilon=1e-08, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([beta1, beta2, epsilon])Initialize self.
create_optimizer
(name, **kwargs)Instantiates an optimizer with a given name and kwargs.
create_state
(index, weight)Creates auxiliary state for a given weight.
create_state_multi_precision
(index, weight)Creates auxiliary state for a given weight, including FP32 high precision copy if original weight is FP16.
register
(klass)Registers a new optimizer.
set_learning_rate
(lr)Sets a new learning rate of the optimizer.
set_lr_mult
(args_lr_mult)Sets an individual learning rate multiplier for each parameter.
set_lr_scale
(args_lrscale)[DEPRECATED] Sets lr scale.
set_wd_mult
(args_wd_mult)Sets an individual weight decay multiplier for each parameter.
update
(index, weight, grad, state)Updates the given parameter using the corresponding gradient and state.
update_multi_precision
(index, weight, grad, …)Updates the given parameter using the corresponding gradient and state.
Attributes
learning_rate
opt_registry