mxnet.optimizer.Signum¶
-
class
mxnet.optimizer.
Signum
(learning_rate=0.01, momentum=0.9, wd_lh=0.0, **kwargs)[source]¶ The Signum optimizer that takes the sign of gradient or momentum.
The optimizer updates the weight by:
rescaled_grad = rescale_grad * clip(grad, clip_gradient) + wd * weight state = momentum * state + (1-momentum)*rescaled_grad weight = (1 - lr * wd_lh) * weight - lr * sign(state)
References
Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli & Anima Anandkumar. (2018). signSGD: Compressed Optimisation for Non-Convex Problems. In ICML‘18.
See: https://arxiv.org/abs/1802.04434
For details of the update algorithm see
signsgd_update
andsignum_update
.This optimizer accepts the following parameters in addition to those accepted by
Optimizer
.- Parameters
momentum (float, optional) – The momentum value.
wd_lh (float, optional) – The amount of decoupled weight decay regularization, see details in the original paper at:https://arxiv.org/abs/1711.05101
-
__init__
(learning_rate=0.01, momentum=0.9, wd_lh=0.0, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([learning_rate, momentum, wd_lh])Initialize self.
create_optimizer
(name, **kwargs)Instantiates an optimizer with a given name and kwargs.
create_state
(index, weight)Creates auxiliary state for a given weight.
create_state_multi_precision
(index, weight)Creates auxiliary state for a given weight, including FP32 high precision copy if original weight is FP16.
register
(klass)Registers a new optimizer.
set_learning_rate
(lr)Sets a new learning rate of the optimizer.
set_lr_mult
(args_lr_mult)Sets an individual learning rate multiplier for each parameter.
set_lr_scale
(args_lrscale)[DEPRECATED] Sets lr scale.
set_wd_mult
(args_wd_mult)Sets an individual weight decay multiplier for each parameter.
update
(index, weight, grad, state)Updates the given parameter using the corresponding gradient and state.
update_multi_precision
(index, weight, grad, …)Updates the given parameter using the corresponding gradient and state.
Attributes
learning_rate
opt_registry