mxnet.ndarray.equal¶
-
mxnet.ndarray.
equal
(lhs, rhs)[source]¶ Returns the result of element-wise equal to (==) comparison operation with broadcasting.
For each element in input arrays, return 1(true) if corresponding elements are same, otherwise return 0(false).
Equivalent to
lhs == rhs
andmx.nd.broadcast_equal(lhs, rhs)
.Note
If the corresponding dimensions of two arrays have the same size or one of them has size 1, then the arrays are broadcastable to a common shape.
- Parameters
lhs (scalar or mxnet.ndarray.array) – First array to be compared.
rhs (scalar or mxnet.ndarray.array) – Second array to be compared. If
lhs.shape != rhs.shape
, they must be broadcastable to a common shape.
- Returns
Output array of boolean values.
- Return type
Examples
>>> x = mx.nd.ones((2,3)) >>> y = mx.nd.arange(2).reshape((2,1)) >>> z = mx.nd.arange(2).reshape((1,2)) >>> x.asnumpy() array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) >>> y.asnumpy() array([[ 0.], [ 1.]], dtype=float32) >>> z.asnumpy() array([[ 0., 1.]], dtype=float32) >>> (x == 1).asnumpy() array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) >>> (x == y).asnumpy() array([[ 0., 0., 0.], [ 1., 1., 1.]], dtype=float32) >>> mx.nd.equal(x,y).asnumpy() array([[ 0., 0., 0.], [ 1., 1., 1.]], dtype=float32) >>> (z == y).asnumpy() array([[ 1., 0.], [ 0., 1.]], dtype=float32)