mxnet.module.PythonModule¶
-
class
mxnet.module.PythonModule(data_names, label_names, output_names, logger=<module 'logging' from '/var/lib/jenkins/miniconda3/envs/mxnet-docs/lib/python3.7/logging/__init__.py'>)[source]¶ A convenient module class that implements many of the module APIs as empty functions.
- Parameters
data_names (list of str) – Names of the data expected by the module.
label_names (list of str) – Names of the labels expected by the module. Could be
Noneif the module does not need labels.output_names (list of str) – Names of the outputs.
-
__init__(data_names, label_names, output_names, logger=<module 'logging' from '/var/lib/jenkins/miniconda3/envs/mxnet-docs/lib/python3.7/logging/__init__.py'>)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__(data_names, label_names, output_names)Initialize self.
backward([out_grads])Backward computation.
bind(data_shapes[, label_shapes, …])Binds the symbols to construct executors.
fit(train_data[, eval_data, eval_metric, …])Trains the module parameters.
forward(data_batch[, is_train])Forward computation.
forward_backward(data_batch)A convenient function that calls both
forwardandbackward.get_input_grads([merge_multi_context])Gets the gradients to the inputs, computed in the previous backward computation.
get_outputs([merge_multi_context])Gets outputs of the previous forward computation.
get_params()Gets parameters, those are potentially copies of the the actual parameters used to do computation on the device.
get_states([merge_multi_context])Gets states from all devices
init_optimizer([kvstore, optimizer, …])Installs and initializes optimizers.
init_params([initializer, arg_params, …])Initializes the parameters and auxiliary states.
install_monitor(mon)Installs monitor on all executors.
iter_predict(eval_data[, num_batch, reset, …])Iterates over predictions.
load_params(fname)Loads model parameters from file.
predict(eval_data[, num_batch, …])Runs prediction and collects the outputs.
prepare(data_batch[, sparse_row_id_fn])Prepares the module for processing a data batch.
save_params(fname)Saves model parameters to file.
score(eval_data, eval_metric[, num_batch, …])Runs prediction on
eval_dataand evaluates the performance according to the giveneval_metric.set_params(arg_params, aux_params[, …])Assigns parameter and aux state values.
set_states([states, value])Sets value for states.
update()Updates parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch.
update_metric(eval_metric, labels[, pre_sliced])Evaluates and accumulates evaluation metric on outputs of the last forward computation.
Attributes
data_namesA list of names for data required by this module.
data_shapesA list of (name, shape) pairs specifying the data inputs to this module.
label_shapesA list of (name, shape) pairs specifying the label inputs to this module.
output_namesA list of names for the outputs of this module.
output_shapesA list of (name, shape) pairs specifying the outputs of this module.
symbolGets the symbol associated with this module.