mxnet.gluon.nn.MaxPool1D¶
-
class
mxnet.gluon.nn.MaxPool1D(pool_size=2, strides=None, padding=0, layout='NCW', ceil_mode=False, **kwargs)[source]¶ Max pooling operation for one dimensional data.
- Parameters
pool_size (int) – Size of the max pooling windows.
strides (int, or None) – Factor by which to downscale. E.g. 2 will halve the input size. If None, it will default to pool_size.
padding (int) – If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.
layout (str, default 'NCW') – Dimension ordering of data and weight. Only supports ‘NCW’ layout for now. ‘N’, ‘C’, ‘W’ stands for batch, channel, and width (time) dimensions respectively. Pooling is applied on the W dimension.
ceil_mode (bool, default False) – When True, will use ceil instead of floor to compute the output shape.
- Inputs:
data: 3D input tensor with shape (batch_size, in_channels, width) when layout is NCW. For other layouts shape is permuted accordingly.
- Outputs:
out: 3D output tensor with shape (batch_size, channels, out_width) when layout is NCW. out_width is calculated as:
out_width = floor((width+2*padding-pool_size)/strides)+1
When ceil_mode is True, ceil will be used instead of floor in this equation.
-
__init__(pool_size=2, strides=None, padding=0, layout='NCW', ceil_mode=False, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__([pool_size, strides, padding, …])Initialize self.
apply(fn)Applies
fnrecursively to every child block as well as self.cast(dtype)Cast this Block to use another data type.
collect_params([select])Returns a
ParameterDictcontaining thisBlockand all of its children’s Parameters(default), also can returns the selectParameterDictwhich match some given regular expressions.export(path[, epoch])Export HybridBlock to json format that can be loaded by SymbolBlock.imports, mxnet.mod.Module or the C++ interface.
forward(x, *args)Defines the forward computation.
hybrid_forward(F, x)Overrides to construct symbolic graph for this Block.
hybridize([active])Activates or deactivates
HybridBlocks recursively.infer_shape(*args)Infers shape of Parameters from inputs.
infer_type(*args)Infers data type of Parameters from inputs.
initialize([init, ctx, verbose, force_reinit])Initializes
Parameters of thisBlockand its children.load_parameters(filename[, ctx, …])Load parameters from file previously saved by save_parameters.
load_params(filename[, ctx, allow_missing, …])[Deprecated] Please use load_parameters.
name_scope()Returns a name space object managing a child
Blockand parameter names.register_child(block[, name])Registers block as a child of self.
register_forward_hook(hook)Registers a forward hook on the block.
register_forward_pre_hook(hook)Registers a forward pre-hook on the block.
save_parameters(filename)Save parameters to file.
save_params(filename)[Deprecated] Please use save_parameters.
summary(*inputs)Print the summary of the model’s output and parameters.
Attributes
nameName of this
Block, without ‘_’ in the end.paramsReturns this
Block’s parameter dictionary (does not include its children’s parameters).prefixPrefix of this
Block.