mxnet.ndarray.SVMOutput¶
-
mxnet.ndarray.
SVMOutput
(data=None, label=None, margin=_Null, regularization_coefficient=_Null, use_linear=_Null, out=None, name=None, **kwargs)¶ Computes support vector machine based transformation of the input.
This tutorial demonstrates using SVM as output layer for classification instead of softmax: https://github.com/dmlc/mxnet/tree/master/example/svm_mnist.
- Parameters
data (NDArray) – Input data for SVM transformation.
label (NDArray) – Class label for the input data.
margin (float, optional, default=1) – The loss function penalizes outputs that lie outside this margin. Default margin is 1.
regularization_coefficient (float, optional, default=1) – Regularization parameter for the SVM. This balances the tradeoff between coefficient size and error.
use_linear (boolean, optional, default=0) – Whether to use L1-SVM objective. L2-SVM objective is used by default.
out (NDArray, optional) – The output NDArray to hold the result.
- Returns
out – The output of this function.
- Return type
NDArray or list of NDArrays