mxnet.optimizer.AdaDelta¶
-
class
mxnet.optimizer.
AdaDelta
(rho=0.9, epsilon=1e-05, **kwargs)[source]¶ The AdaDelta optimizer.
This class implements AdaDelta, an optimizer described in ADADELTA: An adaptive learning rate method, available at https://arxiv.org/abs/1212.5701.
This optimizer updates each weight by:
grad = clip(grad * rescale_grad + wd * weight, clip_gradient) acc_grad = rho * acc_grad + (1. - rho) * grad * grad delta = sqrt(acc_delta + epsilon) / sqrt(acc_grad + epsilon) * grad acc_delta = rho * acc_delta + (1. - rho) * delta * delta weight -= (delta + wd * weight)
This optimizer accepts the following parameters in addition to those accepted by
Optimizer
.- Parameters
rho (float) – Decay rate for both squared gradients and delta.
epsilon (float) – Small value to avoid division by 0.
-
__init__
(rho=0.9, epsilon=1e-05, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([rho, epsilon])Initialize self.
create_optimizer
(name, **kwargs)Instantiates an optimizer with a given name and kwargs.
create_state
(index, weight)Creates auxiliary state for a given weight.
create_state_multi_precision
(index, weight)Creates auxiliary state for a given weight, including FP32 high precision copy if original weight is FP16.
register
(klass)Registers a new optimizer.
set_learning_rate
(lr)Sets a new learning rate of the optimizer.
set_lr_mult
(args_lr_mult)Sets an individual learning rate multiplier for each parameter.
set_lr_scale
(args_lrscale)[DEPRECATED] Sets lr scale.
set_wd_mult
(args_wd_mult)Sets an individual weight decay multiplier for each parameter.
update
(index, weight, grad, state)Updates the given parameter using the corresponding gradient and state.
update_multi_precision
(index, weight, grad, …)Updates the given parameter using the corresponding gradient and state.
Attributes
learning_rate
opt_registry