mxnet.ndarray.L2Normalization¶
-
mxnet.ndarray.
L2Normalization
(data=None, eps=_Null, mode=_Null, out=None, name=None, **kwargs)¶ Normalize the input array using the L2 norm.
For 1-D NDArray, it computes:
out = data / sqrt(sum(data ** 2) + eps)
For N-D NDArray, if the input array has shape (N, N, …, N),
with
mode
=instance
, it normalizes each instance in the multidimensional array by its L2 norm.:for i in 0...N out[i,:,:,...,:] = data[i,:,:,...,:] / sqrt(sum(data[i,:,:,...,:] ** 2) + eps)
with
mode
=channel
, it normalizes each channel in the array by its L2 norm.:for i in 0...N out[:,i,:,...,:] = data[:,i,:,...,:] / sqrt(sum(data[:,i,:,...,:] ** 2) + eps)
with
mode
=spatial
, it normalizes the cross channel norm for each position in the array by its L2 norm.:for dim in 2...N for i in 0...N out[.....,i,...] = take(out, indices=i, axis=dim) / sqrt(sum(take(out, indices=i, axis=dim) ** 2) + eps) -dim-
Example:
x = [[[1,2], [3,4]], [[2,2], [5,6]]] L2Normalization(x, mode='instance') =[[[ 0.18257418 0.36514837] [ 0.54772252 0.73029673]] [[ 0.24077171 0.24077171] [ 0.60192931 0.72231513]]] L2Normalization(x, mode='channel') =[[[ 0.31622776 0.44721359] [ 0.94868326 0.89442718]] [[ 0.37139067 0.31622776] [ 0.92847669 0.94868326]]] L2Normalization(x, mode='spatial') =[[[ 0.44721359 0.89442718] [ 0.60000002 0.80000001]] [[ 0.70710677 0.70710677] [ 0.6401844 0.76822126]]]
Defined in src/operator/l2_normalization.cc:L196
- Parameters
data (NDArray) – Input array to normalize.
eps (float, optional, default=1e-10) – A small constant for numerical stability.
mode ({'channel', 'instance', 'spatial'},optional, default='instance') – Specify the dimension along which to compute L2 norm.
out (NDArray, optional) – The output NDArray to hold the result.
- Returns
out – The output of this function.
- Return type
NDArray or list of NDArrays