mxnet.executor_manager.DataParallelExecutorGroup¶
-
class
mxnet.executor_manager.
DataParallelExecutorGroup
(sym, arg_names, param_names, ctx, slices, train_data, shared_group=None)[source]¶ A group of executors living on different devices, for data parallelization.
- Parameters
sym (Symbol) – The network configuration.
arg_names (list of str) – Equals sym.list_arguments()
param_names (list of str) – List of names of all trainable parameters.
ctx (list of Context) – List of devices for training (data parallelization).
slices (list of int) – Describes how the data parallelization splits data into different devices.
train_data (DataIter (or DataBatch)) – The dataset for training. It could be any object with provide_data and provide_label properties. Loading of actual data is not necessarily needed at this stage.
shared_grop (DataParallelExecutorGroup) – An existing executor group, if to share parameters with it.
-
__init__
(sym, arg_names, param_names, ctx, slices, train_data, shared_group=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
(sym, arg_names, param_names, ctx, …)Initialize self.
backward
()Perform a backward pass on each executor.
forward
([is_train])Perform a forward pass on each executor.
load_data_batch
(data_batch)Load data and labels into arrays.
update_metric
(metric, labels[, pre_sliced])Update evaluation metric with label and current outputs.