mxnet.io.ImageRecordUInt8Iter¶
-
mxnet.io.
ImageRecordUInt8Iter
(*args, **kwargs)¶ b’Iterating on image RecordIO filesnnThis iterator is identical to
ImageRecordIter
except for usinguint8
asnthe data type instead offloat
.nnnnDefined in src/io/iter_image_recordio_2.cc:L777’- Parameters
path_imglist (string, optional, default='') – Path to the image list (.lst) file. Generally created with tools/im2rec.py. Format (Tab separated): <index of record> <one or more labels> <relative path from root folder>.
path_imgrec (string, optional, default='') – Path to the image RecordIO (.rec) file or a directory path. Created with tools/im2rec.py.
path_imgidx (string, optional, default='') – Path to the image RecordIO index (.idx) file. Created with tools/im2rec.py.
aug_seq (string, optional, default='aug_default') – The augmenter names to represent sequence of augmenters to be applied, seperated by comma. Additional keyword parameters will be seen by these augmenters.
label_width (int, optional, default='1') – The number of labels per image.
data_shape (Shape(tuple), required) – The shape of one output image in (channels, height, width) format.
preprocess_threads (int, optional, default='4') – The number of threads to do preprocessing.
verbose (boolean, optional, default=1) – If or not output verbose information.
num_parts (int, optional, default='1') – Virtually partition the data into these many parts.
part_index (int, optional, default='0') – The i-th virtual partition to be read.
shuffle_chunk_size (long (non-negative), optional, default=0) – The data shuffle buffer size in MB. Only valid if shuffle is true.
shuffle_chunk_seed (int, optional, default='0') – The random seed for shuffling
shuffle (boolean, optional, default=0) – Whether to shuffle data randomly or not.
seed (int, optional, default='0') – The random seed.
batch_size (int (non-negative), required) – Batch size.
round_batch (boolean, optional, default=1) – Whether to use round robin to handle overflow batch or not.
prefetch_buffer (long (non-negative), optional, default=4) – Maximum number of batches to prefetch.
dtype ({None, 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'},optional, default='None') – Output data type.
None
means no change.resize (int, optional, default='-1') – Down scale the shorter edge to a new size before applying other augmentations.
rand_crop (boolean, optional, default=0) – If or not randomly crop the image
random_resized_crop (boolean, optional, default=0) – If or not perform random resized cropping on the image, as a standard preprocessing for resnet training on ImageNet data.
max_rotate_angle (int, optional, default='0') – Rotate by a random degree in
[-v, v]
max_aspect_ratio (float, optional, default=0) – Change the aspect (namely width/height) to a random value. If min_aspect_ratio is None then the aspect ratio ins sampled from [1 - max_aspect_ratio, 1 + max_aspect_ratio], else it is in
[min_aspect_ratio, max_aspect_ratio]
min_aspect_ratio (float or None, optional, default=None) – Change the aspect (namely width/height) to a random value in
[min_aspect_ratio, max_aspect_ratio]
max_shear_ratio (float, optional, default=0) – Apply a shear transformation (namely
(x,y)->(x+my,y)
) withm
randomly chose from[-max_shear_ratio, max_shear_ratio]
max_crop_size (int, optional, default='-1') – Crop both width and height into a random size in
[min_crop_size, max_crop_size].``Ignored if ``random_resized_crop
is True.min_crop_size (int, optional, default='-1') – Crop both width and height into a random size in
[min_crop_size, max_crop_size].``Ignored if ``random_resized_crop
is True.max_random_scale (float, optional, default=1) – Resize into
[width*s, height*s]
withs
randomly chosen from[min_random_scale, max_random_scale]
. Ignored ifrandom_resized_crop
is True.min_random_scale (float, optional, default=1) – Resize into
[width*s, height*s]
withs
randomly chosen from[min_random_scale, max_random_scale]``Ignored if ``random_resized_crop
is True.max_random_area (float, optional, default=1) – Change the area (namely width * height) to a random value in
[min_random_area, max_random_area]
. Ignored ifrandom_resized_crop
is False.min_random_area (float, optional, default=1) – Change the area (namely width * height) to a random value in
[min_random_area, max_random_area]
. Ignored ifrandom_resized_crop
is False.max_img_size (float, optional, default=1e+10) – Set the maximal width and height after all resize and rotate argumentation are applied
min_img_size (float, optional, default=0) – Set the minimal width and height after all resize and rotate argumentation are applied
brightness (float, optional, default=0) – Add a random value in
[-brightness, brightness]
to the brightness of image.contrast (float, optional, default=0) – Add a random value in
[-contrast, contrast]
to the contrast of image.saturation (float, optional, default=0) – Add a random value in
[-saturation, saturation]
to the saturation of image.pca_noise (float, optional, default=0) – Add PCA based noise to the image.
random_h (int, optional, default='0') – Add a random value in
[-random_h, random_h]
to the H channel in HSL color space.random_s (int, optional, default='0') – Add a random value in
[-random_s, random_s]
to the S channel in HSL color space.random_l (int, optional, default='0') – Add a random value in
[-random_l, random_l]
to the L channel in HSL color space.rotate (int, optional, default='-1') – Rotate by an angle. If set, it overwrites the
max_rotate_angle
option.fill_value (int, optional, default='255') – Set the padding pixels value to
fill_value
.inter_method (int, optional, default='1') – The interpolation method: 0-NN 1-bilinear 2-cubic 3-area 4-lanczos4 9-auto 10-rand.
pad (int, optional, default='0') – Change size from
[width, height]
into[pad + width + pad, pad + height + pad]
by padding pixesseed_aug (int or None, optional, default='None') – Random seed for augmentations.
- Returns
The result iterator.
- Return type