mxnet.metric.MSE¶
-
class
mxnet.metric.MSE(name='mse', output_names=None, label_names=None)[source]¶ Computes Mean Squared Error (MSE) loss.
The mean squared error is given by
\[\frac{\sum_i^n (y_i - \hat{y}_i)^2}{n}\]- Parameters
name (str) – Name of this metric instance for display.
output_names (list of str, or None) – Name of predictions that should be used when updating with update_dict. By default include all predictions.
label_names (list of str, or None) – Name of labels that should be used when updating with update_dict. By default include all labels.
Examples
>>> predicts = [mx.nd.array(np.array([3, -0.5, 2, 7]).reshape(4,1))] >>> labels = [mx.nd.array(np.array([2.5, 0.0, 2, 8]).reshape(4,1))] >>> mean_squared_error = mx.metric.MSE() >>> mean_squared_error.update(labels = labels, preds = predicts) >>> print mean_squared_error.get() ('mse', 0.375)
-
__init__(name='mse', output_names=None, label_names=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__([name, output_names, label_names])Initialize self.
get()Gets the current evaluation result.
get_config()Save configurations of metric.
get_global()Gets the current global evaluation result.
get_global_name_value()Returns zipped name and value pairs for global results.
get_name_value()Returns zipped name and value pairs.
reset()Resets the internal evaluation result to initial state.
reset_local()Resets the local portion of the internal evaluation results to initial state.
update(labels, preds)Updates the internal evaluation result.
update_dict(label, pred)Update the internal evaluation with named label and pred